Interpolity exchange of basalt tools facilitated via elite control in Hawaiian archaic states.

نویسندگان

  • Patrick V Kirch
  • Peter R Mills
  • Steven P Lundblad
  • John Sinton
  • Jennifer G Kahn
چکیده

Ethnohistoric accounts of late precontact Hawaiian archaic states emphasize the independence of chiefly controlled territories (ahupua'a) based on an agricultural, staple economy. However, elite control of unevenly distributed resources, such as high-quality volcanic rock for adze production, may have provided an alternative source of economic power. To test this hypothesis we used nondestructive energy-dispersive X-ray fluorescence (ED-XRF) analysis of 328 lithic artifacts from 36 archaeological features in the Kahikinui district, Maui Island, to geochemically characterize the source groups. This process was followed by a limited sampling using destructive wavelength-dispersive X-ray fluorescence (WD-XRF) analysis to more precisely characterize certain nonlocal source groups. Seventeen geochemical groups were defined, eight of which represent extra-Maui Island sources. Although the majority of stone tools were derived from Maui Island sources (71%), a significant quantity (27%) of tools derived from extraisland sources, including the large Mauna Kea quarry on Hawai'i Island as well as quarries on O'ahu, Moloka'i, and Lāna'i islands. Importantly, tools quarried from extralocal sources are found in the highest frequency in elite residential features and in ritual contexts. These results suggest a significant role for a wealth economy based on the control and distribution of nonagricultural goods and resources during the rise of the Hawaiian archaic states.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Basalt geochemistry reveals high frequency of prehistoric tool exchange in low hierarchy Marquesas Islands (Polynesia)

Exchange activities, formal or otherwise, serve a variety of purposes and were prominent in many Pacific Island societies, both during island settlement and in late prehistory. Recent Polynesian studies highlight the role of exchange in the region's most hierarchical polities where it contributed to wealth economies, emergent leadership, and status rivalry in late prehistory. Building on this r...

متن کامل

Behavior of lithium and its isotopes during weathering of Hawaiian basalt

[1] We examined the pedogenic behavior of lithium (Li) and its isotopes in Hawaii by sampling same-age lava flows under mean annual rainfall ranging from 18 to 300 cm. Lithium concentrations in these soils vary from 1 to 29 ppm. Whereas Na, K, and Ca are completely leached from the soil at the most humid and severely weathered site, Li, Mg, Si, and Al show significant retention due to their ass...

متن کامل

Interisland and interarchipelago transfer of stone tools in prehistoric Polynesia.

Tracing interisland and interarchipelago movements of people and artifacts in prehistoric Polynesia has posed a challenge to archaeologists due to the lack of pottery and obsidian, two materials most readily used in studies of prehistoric trade or exchange. Here we report the application of nondestructive energy-dispersive x-ray fluorescence (EDXRF) analysis to the sourcing of Polynesian artifa...

متن کامل

Major element variations in Hawaiian shield lavas: Source features and perspectives from global ocean island basalt (OIB) systematics

[1] Among volcanic hot spots globally, Hawaii has the highest magma flux, yet there is significant controversy surrounding the composition of the mantle sourcing Hawaiian lavas. In order to place constraints on the source lithologies of Hawaiian lavas, we explore relationships between major elements and radiogenic isotopes in tholeiitic, shield-building lavas. Olivine-fractionation corrected la...

متن کامل

Redox variations in Mauna Kea lavas, the oxygen fugacity of the Hawaiian plume, and the role of volcanic gases in Earth's oxygenation.

The behavior of C, H, and S in the solid Earth depends on their oxidation states, which are related to oxygen fugacity (fO2). Volcanic degassing is a source of these elements to Earth's surface; therefore, variations in mantle fO2 may influence the fO2 at Earth's surface. However, degassing can impact magmatic fO2 before or during eruption, potentially obscuring relationships between the fO2 of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 4  شماره 

صفحات  -

تاریخ انتشار 2012